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ABSTRACT
Here, we analyze the electron transport properties of a device formed of two crossed graphene nanoribbons with zigzag edges (ZGNRs) in
a spin state with total magnetization different from zero. While the ground state of ZGNRs has been shown to display antiferromagnetic
ordering between the electrons at the edges, for wide ZGNRs—where the localized spin states at the edges are decoupled and the exchange
interaction is close to zero—in the presence of relatively small magnetic fields, the ferromagnetic (FM) spin configuration can become the state
of lowest energy due to the Zeeman effect. In these terms, by comparing the total energy of a periodic ZGNR as a function of the magnetization
per unit cell, we obtain the FM-like solution of the lowest energy for the perfect ribbon, the corresponding FM-like configuration of the
lowest energy for the four-terminal device formed of crossed ZGNRs, and the critical magnetic field needed to excite the system to this
spin configuration. By performing transport calculations, we analyze the role of the distance between layers and the crossing angle of this
device in the electrical conductance, at small gate voltages. The problem is approached employing the mean-field Hubbard Hamiltonian in
combination with non-equilibrium Green’s functions. We find that ZGNR devices subject to transverse magnetic fields may acquire a high-
spin configuration that ensures a metallic response and tunable beam-splitting properties, making this setting promising for studying electron
quantum optics with single-electron excitations.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0233722

I. INTRODUCTION

The increasing interest in graphene nanoribbons (GNRs) for
molecular-scale electronic and spintronic devices has emerged
because it is well known that they inherit some of the exceptional
properties of graphene while having tunable electronic properties,
such as the dependence of the bandgap on their width and edge
topology,1 and the appearance of π-magnetism,2 absent in pure
two-dimensional (2D) graphene. Moreover, these systems are a
remarkable platform for electron quantum optics, where the elec-
trons propagating coherently in these ballistic conductors resemble

photons propagating in optical waveguides.3 On the one hand, it
has been shown that electrons can propagate without scattering over
large distances of the order of ∼100 nm in GNRs.4–6 On the other
hand, ballistic transport in ZGNRs can be fairly insusceptible to edge
defects as a consequence of the prevailing Dirac-like behavior, which
makes the electronic current flow maximally through the central
region of the ribbon.7 Furthermore, with the advent of bottom-up
fabrication techniques, long samples of GNRs free of defects can now
be chemically realized via on-surface synthesis, as demonstrated in
the seminal works by Cai et al. for armchair GNRs8 and by Ruffieux
et al. for ZGNRs.9
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It is known that the ground state of ZGNRs corresponds to a
ferromagnetic (FM) ordering of spins along the edges and antiferro-
magnetic (AFM) ordering between the edges,10,11 i.e., with total spin
projection per unit cell equal to zero, Sz = 0. In this configuration,
the magnetic instabilities of the states localized at the edges coming
from the flat bands of ZGNRs open a bandgap due to the Coulomb
repulsion in the otherwise metallic ribbons.12 The opening of the
bandgap and the edge states associated with the AFM coupling in
ZGNRs have been confirmed by experiments, where the magnetic
order has been shown to be stable up to room temperature.13,14 The
spin-polarized states localized at the edges are coupled such that
there is an energy penalty to excite the AFM ground state to the
FM state (exchange interaction). In the case of wider ZGNRs, the
AFM and FM solutions are close in energy (small exchange interac-
tion) due to the decoupling of the localized edge states, as they decay
exponentially toward the center of the ribbon.10,15–18 In this case, the
FM solution can be favored due to the Zeeman energy under a rela-
tively small magnetic field. The presence of a net spin-polarization,
in the absence of transition metals or heavy atoms, makes these
structures privileged for spintronics due to the weak spin scattering
in pure carbon-based systems.2,19 For instance, the intrinsically weak
spin-orbit and hyperfine couplings in graphene lead to long spin
coherence and relaxation times20 and a large spin-diffusion length
that is expected to reach ∼10 μm even at room temperature.21

Recently, devices formed of crossed GNRs have been predicted
to behave as perfect beam splitters, where the injected electron beam
is divided into two of the four arms with near 50–50 probability and
zero backscattering.22–24 Furthermore, the particular case of devices
formed of crossed ZGNRs is even more interesting, since they can
create a spin-polarizing scattering potential25 where the device can
work as a spin-polarizing beam splitter. Following these ideas for
electron quantum optics applications, a Mach–Zehnder-like inter-
ferometer in a GNRs network has recently been proposed.26 In terms
of their feasibility, manipulation of GNRs in STMs27,28 has opened
the possibility of building 2D multi-terminal GNR-based electronic
circuits.29 The spin properties of such devices can be addressed
by measuring with spin-polarized STMs30,31 and probed by shot-
noise measurements.32 For instance, a device formed of two crossed
ZGNRs has been experimentally realized with the control over the
crossing angle reaching a precision of 5○.33

While, in previous studies, only the AFM regime has been
explored, other spin configurations can appear and show interest-
ing spin-polarized transport properties. For instance, in contrast to
the AFM case, the FM band structure of periodic ZGNRs does not
show a bandgap around the Fermi level, which makes this regime
interesting since there is conduction of electrons at the Fermi level.
Given the metallic character of the FM-like spin configuration, one
can envision to generate a minimal excitation in the device with only
one particle and no hole (a leviton)34–37 by applying a Lorentzian-
like voltage pulse of specific amplitude and duration, enabling the
generation of a single-electron excitation.38

Here, we analyze the functioning of an electronic beam split-
ter built with two crossed ZGNRs (of width 30 carbon atoms across)
in an FM-like configuration, i.e., where the total magnetization of
the device is different from zero. To describe the spin physics of
the system, we employ the Hubbard Hamiltonian in the mean-field
approximation (MFH).39 The main complexity of the modeling lies
in the description of the coupling between ZGNRs at the crossing,

for which we use a Slater–Koster parameterization40 that has shown
to be in good agreement with other more accurate descriptions, such
as density functional theory.24 By employing this simple, yet power-
ful description based on single-electron physics, we can explore large
systems composed of ∼8000 atoms.

The manuscript is structured as follows: In Sec. II, we explain
in detail the theoretical methods employed in this work (MFH
Hamiltonian and NEGF formalism). In Sec. III, we present the
obtained results for a device formed of two crossed-wide ZGNRs in
its FM-like configuration, and finally, the conclusions are provided
in Sec. IV.

II. METHODS
The system of study is composed of two infinite crossed ZGNRs

placed one on top of the other separated by an inter-ribbon dis-
tance d, with a relative crossing angle of around θ = 60○, as shown in
Fig. 1. Here, the semi-infinite electrodes are indicated by red squares
numbered 1–4.

To describe the π-electrons, responsible for the spin polariza-
tion and the transport phenomena in the system in the presence
of Coulomb repulsion, we employ the MFH Hamiltonian39 with a
single pz orbital per site,

HMFH =∑
ij,σ

tijc†iσcjσ +U∑
i,σ

niσ⟨niσ⟩. (1)

Here, ciσ (c†iσ) is the annihilation (creation) operator of an electron
at site i with spin σ = {↑, ↓} and niσ = c†iσciσ is the corresponding
number operator. The tight-binding parameters tij are described by
Slater–Koster two-center σ- and π-type integrals between two pz

FIG. 1. Top and side views of the device geometry with spin density distribution.
The size of the blobs is proportional to the magnitude of the spin polarization,
⟨n↑⟩ − ⟨n↓⟩, and the color depicts the sign of the spin polarization as indicated
by the color bar placed as an inset figure. The four numbered electrodes are indi-
cated in red squares. The crossing angle between the ribbons in this geometry is θ
= 60○. The layers are separated by a distance d. The width (W) of the ribbons is
30 atoms across.
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atomic orbitals40 as used previously for twisted-bilayer graphene41

and crossed GNRs.24–26 U accounts for the Coulomb interaction
between two electrons occupying the same pz orbital. The total
Hamiltonian HT is the composition of the device Hamiltonian HD,
the electrodes Hamiltonian for the periodic leads Hα, and the cou-
pling between these two HαD, i.e., HT = HD +∑α (Hα +HαD). More
details for the implementation can be found in Refs. 25, 26, and 42.

As the junction between the ribbons breaks the translational
invariance of the perfect ZGNRs, we use Green’s function43,44 for-
malism to solve the Schrödinger equation for the open quantum
system. Details of the implemented MFH model with open bound-
ary conditions42 can be found in the supplementary material of
Ref. 25.

The transport properties are analyzed by computing the trans-
mission probabilities per spin index σ = {↑, ↓}, between the different
pairs of terminals as a function of the electron energy E from the
Landauer–Büttiker formula,45,46

Tσ
αβ(E) = Tr [Γσ

αGσΓσ
βGσ†
], (2)

where G is the retarded Green’s function and Γα is the broaden-
ing matrix of lead α, due to the coupling of the device to this lead.
See Ref. 26 for further details on the implementation. From the
transmission probability, one can obtain the zero-bias conductance,
calculated as

Gσ
αβ = G0∑

n
Tσn

αβ(EF), (3)

where G0 is the conductance quantum and Tσn
αβ(EF) is the trans-

mission of the nth available channel at the Fermi level EF , which
is related to Eq. (2) by Tαβ(E) = ∑n Tσn

αβ(E). Note that, around EF ,
there is only one single transverse mode (channel) available, and
therefore, Tσn

αβ(E) = Tσ
αβ(E). To compute the transmission proba-

bilities, we use the open-source code TBTRANS47 and the Python
package SISL for post-processing.48

III. RESULTS
In this section, we analyze the transport properties for a

device formed of two crossed ZGNRs of W = 30 carbon atoms
across (30-ZGNR) as a function of the inter-layer separation d
for values close to the typical distance between layers in graphite
(d = 3.34 Å), and the intersecting angle θ for values close to the
commensurate case where θ = 60○. To understand the spin states of
ZGNRs, we performed different spin-polarized calculations chang-
ing the total mean value of the spin operator Ŝz per unit cell, ⟨Ŝz⟩

= 1
2∑i (⟨ni↑⟩ − ⟨ni↓⟩) ≡ Sz , where the summation goes over the sites

i within the unit cell of the periodic ZGNR.
In Fig. 2(a), we show the total energy per unit cell as a func-

tion of Sz relative to the case of Sz = 0 (the AFM case) for a periodic
ZGNR of W = 30 carbons across. As can be seen here, there is a local
minimum at Sz = 0.317, corresponding to the solution of the low-
est energy for Sz ≠ 0. The fact that the solution of minimum energy
appears at such total Sz can be understood from the fact that, in the
AFM case, the local spin projection summed over the bottom (or
top) half of the unit cell of the ZGNR is ∣Shalf

z ∣ = 0.159. This means
that the total Sz per unit cell in the FM case needs to reach twice
this value to flip the local magnetic moment at one edge. Note that

FIG. 2. (a) Energy differences between MFH solutions calculated with U = 2 eV
(blue line), U = 3 eV (green line), and U = 4 eV (red line), obtained by impos-
ing different spin projections Sz per unit cell. The dashed line separates the two
phases depending on Sz (AFM and FM). The inset figures show examples of the
spin polarization for the AFM and FM configurations, calculated with Sz = 0.08 and
Sz = 0.21, respectively, where the red color indicates the up-spin majority, while
the blue color indicates the down-spin majority. (b) Band structure of the periodic
30-ZGNR calculated with U = 3.0 eV for Sz = 0.317. Red and blue lines represent
the up- and down-spin components, respectively.

the magnetic moment associated with Sz is μ = gSμBSz , where gS ≈ 2
is the electron spin g-factor and μB is the Bohr magneton. To see
to what extent the ribbon width affects these results, we compare
E(Sz) for W = 10, 20, 30, 40-ZGNRs in Fig. S1 in the supplementary
material, where we observe two main features: While the qualitative
behavior is the same for all of them, the value of Sz at which the min-
imum of energy appears is larger for wider ribbons, and, as expected,
the minimum value of E(Sz > 0) diminishes with the width.

For each Sz , we plot the energy corresponding to the spin con-
figuration of the lowest energy in Fig. 2(a). Here, we distinguish
between two phases depending on Sz : AFM character (for Sz < 0.15),
where the spin polarization shows opposite spin majorities at the
edges, and FM character (for Sz > 0.15), where the spin polariza-
tion shows the spin majority of equal spin index. The two insets
to Fig. 2(a) show the spin polarization for a 30-ZGNR: one in the
AFM-like spin configuration (calculated with Sz = 0.08), where it
can be seen that the colors at the edges are different (red and blue),
and another one in the FM-like spin configuration (calculated with
Sz = 0.21), where it can be seen that the same color appears at both
edges (red). In the case of the AFM-like spin configuration for Sz ≠ 0,
not only the sign of the local magnetic moments at the bottom and
top edges of the unit cell is different but also the magnitude, as
a consequence of the existing spin imbalance. Whereas when the
FM character is achieved, both the magnitude and sign of the local
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magnetic moments at the bottom and top edges of the unit cell are
equal.

In Fig. 2(b), we plot the band structure for the FM solution of
the lowest energy for the 30-ZGNR, obtained with Sz = 0.317, for
spin σ =↑ (red lines) and σ =↓ (blue lines). Here, we can observe the
metallic character of the FM configuration for the ZGNR, as there
are states available at the Fermi level, EF , for both up and down spins.

As mentioned above, although the ground state corresponds to
the configuration with Sz = 0, the presence of a magnetic field B in
the z-direction (cf. Fig. 1) can stabilize a high-spin configuration due
to the Zeeman energy ΔE = μB = gSμBSzB. For instance, the corre-
sponding electronic energy E(Sz) for the FM-like configuration of
the lowest energy is E(Sz = 0.317) = 0.97 meV/cell above the ground
state, implying that a critical magnetic field of the order Bc = 26.6 T
(parallel to the z-axis in this case) is needed to make the two spin
states degenerate. In Fig. 3(a), we study the zero-bias conductance
Gαβ(V) with (α, β) ∈ {(1, 2), (1, 3)} (black and green lines, respec-
tively) for a device formed of two crossed 30-ZGNRs as a function
of the inter-layer separation d. Here, V represents a rigid shift of
the Fermi level EF . We consider inter-layer distances close to the
typical van der Waals distance between graphene layers in graphite
(d = 3.34 Å).23,49,50 In the first place, we can infer that the total spin-
averaged conductance (sum of intra- and inter-layer conductances)
is 1 since the values for G12 and G13 are symmetric with respect to
0.5G0, which means that there is no backscattering for an incoming
electron at the Fermi level in these devices at least for these ranges
of d and θ. In the second place, we observe an oscillating behavior of
Gαβ with respect to this varying parameter. For instance, the inter-
/intra-layer conductance ratio reaches its maximum for d = 3.34 Å.
While one would expect that for smaller inter-layer distances d the
interlayer (G13) conductance would increase, as the interlayer hop-
ping integral depends exponentially on the distance between the
ribbons, we observe a decrease (and increase in G12) for smaller d
in Fig. 3(a), as a consequence of an interference process due to the
scattering potential created by the crossing. We also observe that,
for d between 3.44 and 3.49 Å, there is a crossing between G12 and
G13, implying that, for that inter-layer separation, the device behaves
as a perfect 50:50 beam splitter where the incoming electron beam
is equally separated in the two possible outgoing directions with
Gαβ = 0.5G0 for low gate voltages V .

Similarly, in Fig. 3(b), we study Gαβ(V) for different crossing
angles close to the commensurate configuration with θ = 60○. We
apply the rotation around the center of the scattering region (cross-
ing) that is obtained for the case with θ = 60○ and accounts for the
effect of different possible stackings by averaging over the in-plane
translations of one ribbon with respect to the other. By doing so, we
aim to provide a comprehensive overview of the results, account-
ing for the variability in stacking configurations that might occur
in practical scenarios. The in-plane unit cell is determined by the
graphene lattice vectors. We obtain the conductance for a mesh of
four points along each lattice vector within the unit cell. The error
bars are calculated as the standard deviation of the spin-averaged
conductance Gαβ at each point, averaging over the in-plane transla-
tions. The observed variance of approximately ∼10%–20% reflects
the variations across different translational configurations, show-
ing the inherent differences sampled by these translations. However,
not all the stackings are equivalent. For instance, the most ener-
getically favorable (and therefore most likely) configuration is the

FIG. 3. Spin-averaged conductance Gαβ(V) between incoming electrode α = 1
and outgoing electrodes β = 2 (black lines) and β = 3 (green lines) in units of the
conductance quantum G0, as a function of (a) the inter-layer separation d, with
fixed crossing angle θ = 60○ and stacking as shown in Fig. 1, and (b) the crossing
angle θ averaged over the in-plane translations of one ribbon with respect to the
other, with fixed d = 3.34 Å, for a device formed of crossed 30-ZGNRs obtained
with U = 3.0 eV in the FM configuration. The error bars in (b) are calculated as
the standard deviation of Gαβ(0) at each θ by averaging over the different dis-
placements. We obtain this conductance at different gate voltages V = −10 meV
(dashed lines with open squares), V = 0 (solid lines with filled circles), and V = 10
meV (dotted lines with open stars). The legend placed on top is common to both
panels (a) and (b).

AB-stacking (see the supplementary material of Ref. 25). By ana-
lyzing the transport properties relative to this varying parameter in
Fig. 3(b), we observe, on the one hand, that the inter-/intra-layer
conductance ratio reaches its maximum for θ = 55○, 65○. On the
other hand, the sum of the total spin-averaged conductance is 1 as in
panel (a), since the values for G12 and G13 are symmetric with respect
to 0.5G0 as well, meaning that the variation of θ does not introduce
backscattering. We can see that the oscillatory dependence of the
conductance on the crossing angle is less smooth than the one seen
in Fig. 3(a). This occurs due to a more complicated dependence of
the σ- and π-type hopping integrals on θ.

To see the effect of the width on the transport properties as a
function of these two varying parameters, we performed a similar
analysis for a 20-ZGNR device in the supplementary material (see
Fig. S2), where we observe that, qualitatively, the behavior is main-
tained. For further detail, we plot the energy-resolved transmission
probabilities for the 30-ZGNR device as a function of d and θ in the
supplementary material (see Figs. S3 and S4).
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Finally, we note that it has been previously shown that the
symmetries associated with the spatial distribution of the spin den-
sities are crucial for the transport properties of the device.24,25 In
this case, since the FM character implies that ⟨n↑⟩ ≠ ⟨n↓⟩, there
will not be a symmetric behavior for the existing spin channels.
However, the spin-density distribution possesses a symmetry axis
at y = sin (−60○)x that maps the device geometry to itself through
mirror operations, and applies to each spin component individu-
ally (conserves the spin index). As it has been shown in Refs. 24
and 25, certain symmetrical combinations of electrodes lead to equal
transmission probabilities Tσ

αβ = Tσ
γδ . In this case, the symmetrical

electrode mapping corresponds to (1, 2, 3, 4)↔ (4, 3, 2, 1).

IV. CONCLUSIONS
We have analyzed the electron transport properties for a device

formed of two crossed infinite ZGNRs of W = 30 carbon atoms
across (30-ZGNRs) as a function of the spin configuration by fix-
ing different values for the total spin per unit cell Sz . In the first
place, by computing the total energy associated with these config-
urations E(Sz), we have shown that there is a local minimum for
the solution with Sz > 0, with E(Sz > 0) close to 1 meV/cell above
the ground state [E(0)]. We have also seen that, depending on Sz ,
there are two possible phases: AFM-character, where the edges of
the ZGNR unit cell are populated by opposite spin majorities, and
FM-character, where the two edges of the ribbon are populated by
the same spin majority. These two phases appear for Sz < 0.15 and
Sz > 0.15, respectively. We also computed the band structure for the
FM-like configuration of the lowest energy, where we observe that
this system in such a spin state shows a metallic character. We esti-
mate that the critical magnetic field needed to make this FM-like
solution degenerate with the AFM ground state is Bc = 26.6 T for this
particular case, although this value will further decrease for wider
ribbons.

We have also calculated the inter- and intra-layer electrical con-
ductances for different gatings varying the inter-layer distances, for
distances close to the van der Waals distance between graphene
layers in graphite (d = 3.34 Å), and crossing angles close to the com-
mensurate stacking where θ = 60○ for this four-terminal device. We
have shown that the (spin- and displacement-averaged) electrical
conductance displays an oscillatory behavior with respect to these
varying parameters at low gate voltages (−10 meV ≤ V ≤ 10 meV)
while maintaining the sum G12 +G13 = 1, which means that there
is no backscattering for the devices for different values of d and
θ within the shown ranges nor conductance into terminal 4. The
maximum value for the inter-/intra-layer spin-averaged conduc-
tance ratio (G13/G12) for this device is found for d = 3.34 Å and
θ = 55○, 65○. In addition, to show that these results are not exclusive
to the chosen ZGNR width, we performed a similar analysis for a
20-ZGNR device (see supplementary material), where we show that
it possesses similar qualitative behavior.

The results presented here add to the vision of using GNR-
based devices for spintronics and quantum technologies. On top of
the already discussed properties and applications of spin-polarized
GNR-based beam splitters for electron quantum optics,24–26 this
device in its FM-like spin configuration can be a promising candi-
date due to its metallic nature, which facilitates electron injection
through the generation of a minimal excitation. This can be achieved

by applying a Lorentzian-like voltage pulse with a specific ampli-
tude and duration to produce a single-electron excitation within the
device.34–37 In fact, performing time-dependent quantum transport
calculations for levitonic excitations34–37 could offer critical insights
into the nonequilibrium dynamics of the proposed devices, and
further elucidate the role of minimal excitation states in transport
phenomena of the charges injected by the pulse.51–53

SUPPLEMENTARY MATERIAL

See the supplementary material for additional calculations,
including transport calculations for devices with other ribbon widths
and transmission curves as a function of electronic energy for the
device discussed in the main text.
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